library(trisk.analysis)
library(trisk.model)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, unionDownload the data
Set the download path
trisk_inputs_folder <- file.path(".", "trisk_inputs")Download the data
download_success <- download_trisk_inputs(local_save_folder = trisk_inputs_folder)
#> Download completed.Descriptive statistics
Sectors covered by scenarios
if (download_success) {
scenarios <- read.csv(file.path(trisk_inputs_folder, "scenarios.csv"))
number_of_scenario_per_sector <- scenarios %>%
distinct(scenario, sector, technology) %>%
group_by(sector, technology) %>%
summarise(n_scenarios = n())
}
#> `summarise()` has grouped output by 'sector'. You can override using the
#> `.groups` argument.
if (download_success) {
knitr::kable(number_of_scenario_per_sector) %>%
kableExtra::kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kableExtra::scroll_box(width = "100%", height = "400px")
}| sector | technology | n_scenarios |
|---|---|---|
| Automotive | Electric | 8 |
| Automotive | FuelCell | 8 |
| Automotive | Hybrid | 8 |
| Automotive | ICE | 8 |
| Coal | Coal | 32 |
| Oil&Gas | Gas | 32 |
| Oil&Gas | Oil | 32 |
| Power | CoalCap | 32 |
| Power | GasCap | 32 |
| Power | HydroCap | 32 |
| Power | NuclearCap | 32 |
| Power | OilCap | 32 |
| Power | RenewablesCap | 32 |
| Steel | BOF-BF | 2 |
| Steel | BOF-DRI | 2 |
| Steel | EAF-BF | 2 |
| Steel | EAF-DRI | 2 |
| Steel | EAF-MM | 2 |
| Steel | EAF-OHF | 2 |
Example Run
Load downloaded data
if (download_success) {
assets <- read.csv(file.path(trisk_inputs_folder, "assets.csv"))
scenarios <- read.csv(file.path(trisk_inputs_folder, "scenarios.csv"))
financial_data <- read.csv(file.path(trisk_inputs_folder, "financial_features.csv"))
carbon_data <- read.csv(file.path(trisk_inputs_folder, "ngfs_carbon_price.csv"))
}Run Trisk on this data
if (download_success) {
st_results <- run_trisk_model(
assets_data = assets,
scenarios_data = scenarios,
financial_data = financial_data,
carbon_data = carbon_data,
baseline_scenario = "NGFS2023GCAM_CP",
target_scenario = "NGFS2023GCAM_NZ2050",
scenario_geography = "Global"
)
}
#> -- Processing Assets and Scenarios.
#> -- Transforming to Trisk model input.
#> -- Calculating baseline, target, and shock trajectories.
#> -- Calculating net profits.
#> -- Calculating market risk.
#> -- Calculating credit risk.